NILPOTENT INJECTORS IN ALTERNATING GROUPS

BY

ARIE BIALOSTOCKI

ABSTRACT

An N-Injector in an arbitrary finite group is defined as a maximal nilpotent subgroup of G containing a subgroup A of G of maximal order, satisfying class(A) ≤ 2 . In a previous paper the N-Injectors of Sym(n) were determined. In this paper we determine the N-Injectors of Alt(n), after having determined the set of all nilpotent subgroups, A, of Sym(n) of maximal order satisfying class(A) ≤ 2 . It is shown that the set of N-Injectors of Alt(n) consists of a unique conjugacy class, and if $n \neq 9$, it coincides with the set of the nilpotent subgroups of Alt(n) of maximal order.

A. Introduction

In a previous paper [1] the author has defined N-Injectors in an arbitrary finite group G, and among other results determined the N-Injectors of Sym(n). In the present paper we will continue [1] and deal with N-Injectors of Alt(n), as well as with some generalizations.

In Sections B and C preliminary results are derived. In Section D the N-Injectors of Alt(n) are determined, and they are shown to consist of a unique conjugacy class. It will also be proved that if $n \neq 9$, then the N-Injectors of Alt(n) are the nilpotent subgroups of maximal order. We will conclude the paper by proving that if G = Alt(n), then conjecture 1 and conjecture 2 of [1] hold. To begin, we will review some definitions and notation from [1].

DEFINITIONS AND NOTATION. Let π be a set of primes and G be a finite group.

(a) d(2, G) $(d(\pi, 2, G))$ will denote the maximum of orders of all nilpotent subgroups (nilpotent π -subgroups) of G of class at most two.

(b) $\mathcal{A}(2,G)$ ($\mathcal{A}(\pi,2,G)$) will denote the set of all nilpotent subgroups (nilpotent π -subgroups) of G of class at most two, having order d(2,G)($d(\pi,2,G)$).

Received October 27, 1982

A. BIALOSTOCKI

(c) The N-Injectors (π -N-Injectors) of G are maximal nilpotent subgroups (maximal nilpotent π -subgroups) of G containing an element of $\mathcal{A}(2, G)$ ($\mathcal{A}(\pi, 2, G)$). The set of N-Injectors (π -N-Injectors) of G will be denoted by NI(G) (NI(π , G)).

(d) $d(\infty, G)$ $(d(\pi, \infty, G))$ will denote the order of nilpotent subgroups (nilpotent π -subgroups) of G of maximal order.

(c) $\mathscr{A}(\infty, G)$ ($\mathscr{A}(\pi, \infty, G)$) will denote the set of all nilpotent subgroups (nilpotent π -subgroups) of G of maximal order.

In [1] these definitions were discussed in detail, and the following two conjectures were stated.

CONJECTURE 1. If G is a finite group and π a set of primes, then $NI(\pi, G)$ is a conjugacy class.

CONJECTURE 2. If G is a finite group and π a set of primes, then $\mathscr{A}(\pi, \infty, G)$ is a conjugacy class.

In [1] it was proved that if G = Sym(n), then conjecture 1 and conjecture 2 hold. As mentioned above, in this paper we confirm conjectures 1 and 2 for the alternating groups.

B. Evaluation of $d(2, S_2(Alt(2n)))$

In this section we will first determine $\mathcal{A}(2, S_2(\operatorname{GL}(n, 3)))$ and then $\mathcal{A}(2, S_2(\operatorname{Sym}(2n)))$. As a consequence $d(2, S_2(\operatorname{Alt}(2n)))$ will be evaluated. It was already proved in [1, sec. B] that $S_2(\operatorname{Sym}(2n))$ can be embedded in $S_2(\operatorname{GL}(n, 3))$ and that

$$d(2, S_2(GL(n, 3))) = d(2, S_2(Sym(2n))) = 2^{n \cdot \lfloor n/2 \rfloor}.$$

We will use these facts freely in the sequel.

LEMMA B.1. Let a p-group P act faithfully and irreducibly on a vector space V of dimension n over GF(q). Suppose that P is not cyclic, generalized quaternion, dihedral or semi-dihedral, then:

(a) P has a subgroup H of index p such that we can write V as a direct sum $V = V_1 + V_2 + \cdots + V_p$, where each V_i is an H invariant subspace.

(b) Let $K_i = C_H(V_i)$; then $K_i \neq 1$ for $1 \leq i \leq p$ and if $x \in P \setminus H$, then $V_i x = V_{i'}$, where the permutation $i \rightarrow i'$ is a p-cycle.

(c) If in addition $class(P) \leq 2$, then $|K_i| \leq p$ for $1 \leq i \leq p$.

PROOF. Parts (a) and (b) are a theorem of Roquette [3, 19.2]. We will prove part (c). Take $x \in P \setminus H$ and define a mapping:

Vol. 44, 1983

$$\varphi: K_1 \to \Omega_1(Z(P))$$
 by $\varphi(y) = [y, x] \forall y \in K_1$.

We will show that φ is a well defined monomorphism. Since P is of class at most two $\varphi(y) \in P' \subseteq Z(P)$. Since for each $i, 1 \leq i \leq p, K_i = K_i^{*'}$ for some $j, 1 \leq j \leq p$, it follows that $C_{K_i}(x)$ acts trivially on V; hence $C_{K_i}(x) = 1$. This implies that:

$$[H, K_1] \subseteq K_1 \cap P' \subseteq K_1 \cap Z(P) = 1$$
 and $K_1 \subseteq Z(H)$.

Clearly, for each $y \in K_1$, $y^x = y[y, x]$ and by induction $y^{*'} = y[y, x]'$. Since $x^p \in H$ and $K_1 \subseteq Z(H)$, $y = y^{x^p} = y[y, x]^p$, and we obtain that $[y, x]^p = 1$. Thus, $\varphi(y) \in \Omega_1(Z(P))$ and φ is well defined. Moreover, as

$$\varphi(y_1y_2) = [y_1y_2, x] = [y_1, x]^{y_2}[y_2, x] = [y_1, x][y_2, x] = \varphi(y_1)\varphi(y_2)$$

 φ is a homomorphism, and since ker $\varphi = C_{\kappa_1}(x) = 1$, φ is a monomorphism.

P acts irreducibly on *V* so by [3, 15.4] Z(P) is cyclic. Therefore, $|\Omega_1(Z(P))| = p$, which implies that $|\varphi(K_1)| \le p$; hence $|K_1| \le p$. Now the proof of (c) is complete.

LEMMA B.2. If P is a 2-subgroup of GL(n, 3) of class at most two and of order $2^{n+\lfloor n/2 \rfloor}$, which acts irreducibly, then either (a) or (b) occurs:

- (a) n = 1 and |P| = 2;
- (b) n = 2, |P| = 8 and P is one of the following: cyclic, quaternion or dihedral.

PROOF. We will prove first that $n \le 2$. If P is none of the following groups, cyclic, generalized, quaternion, dihedral or semi-dihedral, then apply Lemma B.1. It follows that n = 2t and there are two subgroups of P, K_1 and H, such that $K_1 \subseteq H$, $|K_1| \le 2$, |P:H| = 2, $H/K_1 \subseteq S_2(GL(t,3))$ and $class(H/K_1) \le 2$. Consequently, $|H:K_1| \le 2^{t+1/2}$ and hence

$$2^{3i} = |P| = |P:H| |H:K_1| |K_1| \leq 2^{i+[i/2]+2},$$

yielding $t \le 1$ and hence $n \le 2$. As class $(P) \le 2$, P is not semi-dihedral. If P is generalized quaternion or dihedral, then class $(P) \le 2$ implies that |P| = 8, and in view of the order of P it follows that n = 2. If P is cyclic, then by [1, p. 266] $|P| \le 2^3[n/2] + 2$ and the order of P implies that $n \le 3$. But as $S_2(GL(3, 3))$ does not contain a cyclic subgroup of order 16, we obtain in this case $n \le 2$ as well. We have proved that in any case $n \le 2$. As $S_2(GL(2, 3))$ is semi-dihedral of order 16 and class three, [2, p. 191] implies the structure of P in the case n = 2, and Lemma B.2 is proved.

LEMMA B.3. If P is a 2-subgroup of GL(n,3) of class at most two and of order $2^{n+\lfloor n/2 \rfloor}$, then:

(a) P is a direct product of its projections on its irreducible subspaces.

(b) If n is even, then the dimension of each irreducible subspace is two.

(c) If n is odd, then the dimension of one irreducible subspace is one, while that of the other subspaces is two.

PROOF. Consider $\prod_{i=1}^{s} P_i$, the direct product of the projections of P on its irreducible subspaces V_i . It is a subgroup of GL(n, 3) of class at most two, hence of order 2n+in/21 at most. But as $|P| = 2^{n+in/21}$, it follows that $P = \prod_{i=1}^{s} P_i$ and (a) is proved. Let dim $(V_i) = n_i$; by Lemma B.2, n_i is either 1 or 2. Now the order of P implies (b) and (c).

Combining Lemma B.2 and Lemma B.3, the structure of the elements of the set $\mathcal{A}(2, S_2(GL(n, 3)))$ is clear.

COROLLARY B.4. Let $P \in \mathcal{A}(2, S_2(\operatorname{GL}(n, 3)))$. Then P is the direct product $P = \prod_{i=1}^{n/2} D_i$ if n is even and $P = \prod_{i=0}^{in/2} D_i$ if n is odd, where D_0 is a group of order 2 and the D_i 's for $1 \leq i \leq \lfloor n/2 \rfloor$ are dihedral, quaternion or cyclic of order 8.

LEMMA B.5. Let P and D_i be as in Corollary B.4 and suppose that P has a faithful permutation representation on Ω of degree 2n. Then the following hold:

(a) The representation of P is a direct product of the representations of the D_i 's, $0 \le i \le \lfloor n/2 \rfloor$.

(b) For $1 \le i \le \lfloor n/2 \rfloor$, D_i is the dihedral group and it is represented on 4 symbols.

(c) D_0 is represented on 2 symbols.

PROOF. By induction on *n*. Clearly the Lemma holds for n = 1 and 2. Assume n > 2, and let $\Omega_1, \Omega_2, \dots, \Omega_k$ be a partition of Ω into transitive orbits of *P*. Consider $\prod_{i=1}^{k} P_i$, the direct product of the projections of *P* on the Ω_i 's, $1 \le i \le k$. This is a group of class at most 2 and *P* can be embedded in it. Now the order of *P* implies that $P = \prod_{i=1}^{k} P_i$ and $|P_i| = 2^{n_i \cdot \lfloor n/2 \rfloor}$, where $2n_i = |\Omega_i|$ is a power of 2. In view of the order of *P* at most one Ω_i has cardinality 2, while all the others have cardinality divisible by 4. As P_i can be embedded in $S_2(GL(n_i, 3))$ and has order $2^{n_i \cdot \lfloor n/2 \rfloor}$, by Corollary B.4 it has the same form as *P* and an induction hypothesis can be applied if $k \ge 2$. Thus the Lemma is proved in the case when *P* is not transitive. If *P* is transitive, the stabilizer of a point is a subgroup *H* having the property core(*H*) = 1. As for $1 \le i \le s$, every subgroup of D_i of order 4 contains a central involution, the order of the projection of *H* on each D_i is at most 2 and hence $|H| \le 2^{\lfloor n/2 \rfloor}$. It follows that $2^{n + \lfloor n/2 \rfloor} = |P| = 2n |H| \le 2n 2^{\lfloor n/2 \rfloor}$ which contradicts the assumption n > 2. The proof of Lemma B.5 is complete.

COROLLARY B.6. If $P \in \mathcal{A}(2, S_2(\text{Sym}(2n)))$, then P is a direct product of permutation groups as follows:

- (a) $P = \prod_{i=1}^{n/2} S_2(\text{Sym}(4))$ if *n* is even.
- (b) $P = (\prod_{i=1}^{\lfloor n/2 \rfloor} S_2(\text{Sym}(4))) \times \text{Sym}(2)$ if *n* is odd.

PROOF. If $P \in \mathcal{A}(2, S_2(\text{Sym}(n)))$, then P can be embedded in $S_2(\text{GL}(n, 3))$ and then $P \in \mathcal{A}(2, S_2(\text{GL}(n, 3)))$. Now apply Corollary B.4 and Lemma B.5.

COROLLARY B.7. $d(2, S_2(Alt(2n))) = 2^{n+\lfloor n/2 \rfloor - 1}$.

PROOF. Clearly $d(2, S_2(Alt(2))) = 1$. So suppose that n > 1. Then $d(2, S_2(Alt(2n)))$ equals either $2^{n+\lfloor n/2 \rfloor}$ or $2^{n+\lfloor n/2 \rfloor}$. If $d(2, S_2(Alt(2n))) = 2^{n+\lfloor n/2 \rfloor}$, then $\mathscr{A}(2, S_2(Alt(2n))) \subseteq \mathscr{A}(2, S_2(Sym(2n)))$. But if $P \in \mathscr{A}(2, S_2(Sym(2n)))$, then it follows by Corollary B.6 that P has odd permutations, for example a single transposition in an arbitrary $S_2(Sym(4))$, a contradiction.

C. Arithmetical lemmas

We will introduce some notation. Let *m* be a positive integer and *p* a prime. Define $\varphi_2(1) = \varphi_x(1) = 1$ and

$$\varphi_{2}(m) = \begin{cases} 2 & \text{if } m = 2, \\ 2^{3 \cdot 2^{\alpha^{-2}}} & \text{if } m = 2^{\alpha} \text{ and } \alpha \ge 2, \\ p^{p^{\alpha^{-1}}} & \text{if } m = p^{\alpha}, p > 2 \text{ and } \alpha \ge 1, \\ \prod_{i=1}^{s} \varphi_{2}(p_{i}^{\alpha_{i}}) & \text{if } m = \prod_{i=1}^{s} p_{i}^{\alpha_{i}}, \text{ where the } p_{i} \text{ 's are } \\ \text{distinct primes for } 1 \le i \le s; \end{cases}$$

$$\varphi_{\infty}(m) = \begin{cases} p^{(p^{\alpha} - 1)i(p+1)} & \text{if } m = p^{\alpha}, \\ \prod_{i=1}^{s} \varphi_{\infty}(p_{i}^{\alpha}) & \text{if } m = \prod_{i=1}^{s} p_{i}^{\alpha}, \text{ where the } p_{i}\text{ 's are} \\ & \text{distinct primes for } 1 \leq i \leq s. \end{cases}$$

Using our notation it follows that if M is a maximal nilpotent subgroup of Sym(n) corresponding to the partition $\{n_1, \dots, n_r\}$ of n (see [1, p. 267] and [4, I.5]), then by [4, I.5] $|M| = \prod_{i=1}^r \varphi_{\alpha}(n_i)$ and by [1, B.5] $d(2, M) = \prod_{i=1}^r \varphi_2(n_i)$.

LEMMA C.1. If p is an odd prime and $p^{\alpha} = \sum_{i=1}^{s} 2^{\alpha_i}$ is the 2-adic representation of p^{α} , then:

- (a) $\varphi_2(p^{\alpha}) < \frac{1}{2} \prod_{i=1}^{s} \varphi_2(2^{\alpha_i})$ if $p^{\alpha} \notin \{3, 5\}$,
- (b) $\varphi_{\infty}(p^{\alpha}) < \frac{1}{2} \prod_{i=1}^{s} \varphi_{\infty}(2^{\alpha_{i}})$ if $p^{\alpha} \notin \{3, 5, 9\}$.

A. BIALOSTOCKI

PROOF. (a) The inequality can be easily checked for $p^{\alpha} \leq 27$, so assume $p^{\alpha} > 27$. If $p^{\alpha} \equiv 3 \pmod{4}$, then $\prod_{i=1}^{s} \varphi_2(2^{\alpha_i}) = 2^{-5/4} \prod_{i=1}^{s} 2^{3 \cdot 2^{\alpha_i - 2}}$ and if $p^{\alpha} \equiv 1 \pmod{4}$, then $\prod_{i=1}^{s} \varphi_2(2^{\alpha_i}) = 2^{-3/4} \prod_{i=1}^{s} 2^{3 \cdot 2^{\alpha_i - 2}}$. So in any case we get in view of $p^{\alpha} > 27$ and $p \geq 3$,

$$\frac{1}{2} \prod_{i=1}^{s} \varphi_2(2^{\alpha_i}) \ge 2^{-9/4} \prod_{i=1}^{s} 2^{3 \cdot 2^{\alpha_i - 2}} = 2^{3p^{\alpha/4 - 9/4}} > 2^{2p^{\alpha/3}} > p^{p^{\alpha_{-1}}} = \varphi_2(p^{\alpha})$$

(b) If $p^{\alpha} \neq 3$ is of the form $2^{\beta} - 1$, then by [3, 19.3] $\alpha = 1$ and the inequality follows easily. So assume that p is not of this form and hence $s < \log_2 p^{\alpha}$. Since

$$\frac{1}{2}\prod_{i=1}^{s} 2^{2^{\alpha_{i}-1}} = \frac{1}{2} 2^{p^{\alpha}-s} > \frac{1}{2} 2^{p^{\alpha}-\log_2 p^{\alpha}},$$

it suffices to prove that $p^{(p^{\alpha}-1)/(p-1)} < \frac{1}{2}2^{p^{\alpha}-\log_2 p^{\alpha}}$. We will prove the following equivalent inequality:

(*)
$$1 > \left(\frac{1}{p-1} + \frac{\alpha}{p^{\alpha}-1}\right) \log_2 p.$$

(i) If $p \ge 7$, then $1 > (2/(p-1))\log_2 p$. Since $1/(p-1) \ge \alpha/(p^{\alpha}-1)$, the inequality (*) holds for $p \ge 7$.

(ii) If p = 5 and $\alpha \ge 2$, then

$$\frac{\alpha}{5^{\alpha}-1} \leq \frac{2}{5^2-1}$$
 and $1 > \left(\frac{1}{5-1} + \frac{2}{5^2-1}\right) \log_2 5$,

yielding (*).

(iii) If p = 3 and $\alpha \ge 3$, then

$$\frac{\alpha}{3^{\alpha}-1} \leq \frac{3}{3^{3}-1}$$
 and $1 > \left(\frac{1}{3-1} + \frac{3}{3^{3}-1}\right) \log_2 3$,

yielding (*).

LEMMA C.2. If m is a positive integer, not a power of a prime, then there is a partition $\{n_1, \dots, n_r\}$ of m into powers of a fixed prime which divides m such that:

(a) $\varphi_2(m) < \frac{1}{2} \prod_{i=1}^{\prime} \varphi_2(n_i),$

(b) $\varphi_{\infty}(m) \leq \frac{1}{2} \prod_{i=1}^{r} \varphi_{\infty}(n_i).$

PROOF. Using induction it is easily seen that it suffices to prove the Lemma in the case $m = p^{\alpha}q^{\beta}$, where p and q are distinct primes and p > q. We will deal first with the case m = 6. Considering the partition $\{4, 2\}$ we obtain $\varphi_2(4)\varphi_2(2) = \varphi_x(4)\varphi_x(2) = 8 \cdot 2 = 16$ while $\varphi_2(6) = \varphi_x(6) = 6$, and we are through.

Now we can assume that $p^{\alpha} \ge 3$ and if $p^{\alpha} = 3$, then q = 2 and $\beta \ge 2$. Consider the partition of *m* into q^{β} parts, where each part equals p^{α} . Parts (a) and (b) will be proved separately.

(a) (i) If $m = p^{\alpha} \cdot 2$, then $p^{\alpha} > 3$ implies that

$$\varphi_2(m) = 2p^{p^{\alpha-1}} < \frac{1}{2}p^{2p^{\alpha-1}} = \frac{1}{2}(\varphi_2(p^{\alpha}))^2$$

and this case is settled.

(ii) If $m = p^{\alpha} \cdot 2^{\beta}$ where $\beta \ge 2$, then the desired inequality is equivalent to

$$2^{3/4} < {\binom{1}{2}}^{1/2^{\beta}} p^{p^{\alpha-1} \cdot (2^{\beta}-1)/2^{\beta}}.$$

But as $\binom{1}{2}^{1/4} \leq \binom{1}{2}^{1/2^{\beta}}$ and $3/4 \leq (2^{\beta} - 1)/2^{\beta}$, the last inequality follows and this case is settled too.

(iii) If $m = p^{\alpha}q^{\beta}$ where $q \ge 3$, then the desired inequality is equivalent to

$$q^{1/q} < (\frac{1}{2})^{1/q^{\beta}} p^{p^{\alpha-1} \cdot (q^{\beta-1})/q^{\beta}}$$

But as $\binom{1}{2}^{1/3} \leq \binom{1}{2}^{1/q^{\beta}}$, $\frac{2}{3} \leq (q^{\beta} - 1)/q^{\beta}$ and $q^{1/q} \leq 3^{1/3}$ the last inequality follows and the proof of (a) is complete.

(b) The desired inequality is equivalent to

$$q^{1/(q-1)} < {\binom{1}{2}}^{1/(q^{\beta}-1)} p^{(p^{\alpha}-1)/(p-1)}.$$

If $p^{\alpha} = 3$, then q = 2 and $\beta \ge 2$ and the inequality follows from $\binom{1}{2}^{1/3} \le \binom{1}{2}^{1/(q^{\beta}-1)}$ and $2 = q^{1/(q-1)}$. If $p^{\alpha} \ge 5$, then the inequality follows as $\frac{1}{2} \le \binom{1}{2}^{1/(q^{\beta}-1)}$ and $q^{1/(q-1)} \le 2$. Now the proof of part (b) is complete.

D. The main theorems

THEOREM D.1. (a) $\mathscr{A}(\infty, Alt(5))$ is the set of 5-Sylow subgroups of Alt(5).

(b) If n = 3, 6, 9, then $\mathcal{A}(\infty, Alt(n))$ is the set of 3-Sylow subgroups of Alt(n).

(c) If $n \neq 3 \pmod{4}$ and $n \neq 5, 6, 9$ then $\mathscr{A}(\infty, \operatorname{Alt}(n))$ is the set of 2-Sylow subgroups of $\operatorname{Alt}(n)$.

(d) If $n = 3 \pmod{4}$ and n > 3, then $\mathscr{A}(\infty, \operatorname{Alt}(n))$ is the set of all subgroups generated by any 3-cycle and a 2-Sylow subgroup of $\operatorname{Alt}(n-3)$ on the remaining n-3 symbols.

(e) In any case $\mathscr{A}(\infty, \operatorname{Alt}(n))$ is a conjugacy class.

PROOF. In view of the structure of maximal nilpotent subgroups of Sym(n) (see [4, 1.5]) a simple checking yields (a) and (b). Let $M_A \in \mathcal{A}(\infty, \operatorname{Alt}(n))$ where $n \neq 3, 5, 6, 9$ and let $M_A \subseteq M$, where M is a maximal nilpotent subgroup of Sym(n), corresponding to the partition $\{n_1, n_2, \dots, n_k\}$ of n. If one of the n_i 's is

not a power of a prime, then by applying Lemma C.2 (b) to that n_i it follows that there is a nilpotent subgroup of Sym(n), M' (not necessarily maximal) satisfying |M'| > 2|M|, contradicting $M_A \in \mathcal{A}(\infty, \text{Alt}(n))$. Hence each n_i is a power of a prime. Applying Lemma C.1 (b), it follows that each n_i is either a power of 2 or belongs to the set {3, 5, 9}. A simple argument yields:

(i) If 3 occurs twice in the partition, then n = 6. (Otherwise, the partition is of one of the following types: $\{3, 3, 9, \dots\}$, $\{3, 3, 5, \dots\}$, $\{3, 3, 2^{\alpha}, \dots\}$, $\alpha \ge 1$, $\{3, 3, 1\}$, which can be replaced by $\{8, 4, 2, 1, \dots\}$, $\{8, 2, 1, \dots\}$, $\{4, 2, 2^{\alpha}, \dots\}$, $\{4, 3\}$, respectively, the latter partitions corresponding to an M' satisfying |M'| > 2|M|.)

(ii) If 5 (9) belongs to the partition, then again by a suitable replacement argument it follows that n = 5 (n = 9).

As (i) and (ii) contradict our assumption $n \neq 3, 5, 6, 9$, we can deduce that the n_i 's are powers of 2 and possibly one of them is 3. Since M is a maximal nilpotent subgroup of Sym(n), the n_i 's are either the terms in the 2-adic representation of n, or 3 occurs and the n_i 's are the terms in the 2-adic representation of n - 3. Using the information about $\mathscr{A}(\infty, \operatorname{Sym}(n))$ (see [1]), (c) and (d) follow. Clearly $\mathscr{A}(\infty, \operatorname{Alt}(n))$ is a conjugacy class in cases (a), (b) and (c). As Alt(n) is transitive on the $\binom{n}{3}$ 3-subsets of $\{1, 2, \dots, n\}$, it follows that $\mathscr{A}(\infty, \operatorname{Alt}(n))$ is a conjugacy class in case (d) as well. This completes the proof of (e) and hence of Theorem D.1.

THEOREM D.2. (a) NI(Alt(5)) is the set of 5-Sylow subgroups of Alt(5).

(b) If n = 3, 6, then NI(Alt(n)) is the set of 3-Sylow subgroups of Alt(n).

(c) If $n \neq 3 \pmod{4}$ and $n \neq 5, 6$, then NI(Alt(n)) is the set of 2-Sylow subgroups of Alt(n).

(d) If $n = 3 \pmod{4}$ and n > 3, then NI(Alt(n)) is the set of all subgroups generated by any 3-cycle and a 2-Sylow subgroup of Alt(n - 3) on the remaining n - 3 symbols.

(e) In any case, NI(Alt(n)) is a conjugacy class.

PROOF. Theorem D.1 implies (a) and (b). Let $M_A \in NI(Alt(n))$ where $n \neq 3, 5, 6$ and let $M_A \subseteq M$, where M is a maximal nilpotent subgroup of Sym(n) corresponding to the partition $\{n_1, n_2, \dots, n_k\}$ of n. If one of the n_i 's is not a power of a prime, then by applying Lemma C.2(a) to that n_i it follows that there is a nilpotent subgroup of Sym(n), M' (not necessarily maximal) satisfying d(2, M') > 2d(2, M) contradicting $M_A \in NI(Alt(n))$. Hence each n_i is a power of a prime. Applying Lemma C.1(a) it follows that each n_i is either a power of 2 or belongs to the set $\{3, 5\}$. As in Theorem D.1 it follows that:

(i) If 3 occurs twice in the partition, then n = 6, contradicting our assumption.

(ii) If 5 belongs to the partition, then n = 5, contradicting our assumption again.

Now we can deduce that the n_i 's are powers of 2 and possibly one of them is 3. Since M is a maximal nilpotent subgroup of Sym(n), the n_i 's are either the terms in the 2-adic representation of n or 3 occurs and the n_i 's are the terms in the 2-adic representation of n - 3. Using the information about NI(Sym(n)) (see [1]), (c) and (d) follow. The proof of (e) is similar to that of Theorem D.1(e).

THEOREM D.3. Let π be a set of primes, then:

(a) $NI(\pi, Alt(n))$ consists of a unique conjugacy class.

(b) $\mathscr{A}(\pi, \infty, \operatorname{Alt}(n))$ consists of a unique conjugacy class.

PROOF. Parts (a) and (b) will be proved simultaneously. Assume first that $2 \in \pi$. The following table determines the sets $NI(\pi, Alt(n))$ and $\mathscr{A}(\pi, \infty, Alt(n))$ in the four possible subcases. We omit the proofs, which follow easily from Theorems D.1 and D.2 and the structure of maximal nilpotent subgroups of Sym(n), [4, I.5].

	$NI(\pi, Alt(n))$	$\mathscr{A}(\pi,\infty,\operatorname{Alt}(n))$
$3 \in \pi$ $5 \in \pi$	NI(Alt(n))	$\mathcal{A}(\infty, \operatorname{Alt}(n))$
$3 \in \pi$ $5 \notin \pi$	$NI(Alt(n))$ if $n \neq 5$ $Syl_2(Alt(n))$ if $n = 5$	$\mathcal{A}(\infty, \operatorname{Alt}(n))$ if $n \neq 5$ Syl ₂ (Alt(n)) if $n = 5$
$3 \notin \pi$ $5 \in \pi$	Syl ₂ (Alt(n)) if $n \neq 5$ Syl ₅ (Alt(n)) if $n = 5$	$Syl_2(Alt(n)) \text{if } n \neq 5$ $Syl_3(Alt(n)) \text{if } n = 5$
3∉π 5∉π	$Syl_2(Alt(n))$	$Syl_2(Alt(n))$

Thus the table above implies Theorem D.3 in the case $2 \in \pi$. Assuming $2 \notin \pi$, it follows by [1, D.1, D.2] that if

 $A \in NI(\pi, Sym(n)) = NI(\pi, Alt(n))$ $(A \in \mathscr{A}(\pi, \infty, Sym(n)),$

then it has the following form: It is the π -Hall subgroup of a maximal nilpotent subgroup of Sym(n), which corresponds to a uniquely defined partition $\{m, n_1, \dots, n_s\}$ of n satisfying the following conditions:

(a) $m < \min\{p \mid p \in \pi\}$ or m = 0.

(b) For each *i*, $1 \le i \le s$, $n_i = p_i^{\alpha_i}$ where $p_i \in \pi$ not necessarily distinct and $\alpha_i \ge 1$.

As Alt(n) is transitive on the set of all partitions of $\{1, 2, \dots, n\}$ of the form

 $\{m, n_1, \dots, n_s\}$ and as $\operatorname{Syl}_{p_i}(\operatorname{Sym}(n_i))$ forms a conjugacy class in $\operatorname{Alt}(n_i)$, $NI(\infty, \operatorname{Alt}(n))$ ($\mathscr{A}(\pi, \infty, \operatorname{Alt}(n))$) consists of a unique conjugacy class in $\operatorname{Alt}(n)$ and Theorem D.3 is proved.

ACKNOWLEDGEMENT

This work is a part of the author's doctoral research at Tel Aviv University. The author is extremely grateful to his thesis advisor, Professor M. Herzog, for his guidance and encouragement.

References

1. A. Bialostocki, Nilpotent injectors in symmetric groups, Isr. J. Math. 41 (1982), 261-273.

2. D. Gorenstein, Finite Groups, Harper & Row Publishers, New York, Evanston, and London, 1968.

3. D. Passman, Permutation Groups, W. A. Benjamin Inc., New York, Amsterdam, 1968.

4. D. A. Suprunenko, *Matrix Groups*, Translations of Mathematical Monographs, Vol. 45, Am. Math. Soc., Providence, RI, 1976.

DEPARTMENT OF PURE MATHEMATICS SCHOOL OF MATHEMATICAL SCIENCES TEL AVIV UNIVERSITY

TEL AVIV, ISRAEL