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NILPOTENT INJECTORS 
IN ALTERNATING GROUPS 

BY 

ARIE BIALOSTOCKI 

ABSTRACT 

An N-Injector in an arbitrary finite group is defined as a maximal nilpotent 
subgroup of G containing a subgroup A of G of maximal order, satisfying 
class(A )=< 2. In a previous paper the N-Injectors of Sym(n)were determined. 
In this paper we determine the N-Injectors of AIt(n), after having determined 
the set of all nilpotent subgroups, A, of Sym(n) of maximal order satisfying 
class(A)=2. It is shown that the set of N-Injectors of AIt(n) consists of a 
unique conjugacy class, and if n,. ~ 9, it coincides with the set of the nilpotent 
subgroups of Air(n) of maximal order. 

A. Introduction 

In a previous paper  [1] the author has defined N-Injectors  in an arbitrary finite 

group G, and among other results determined the N-Injectors  of Sym(n). In the 

present paper  we will continue [1] and deal with N-Injectors  of Alt(n),  as well as 

with some generalizations. 

In Sections B and C preliminary results are derived. In Section D the 

N-Ifijectors of Alt(n)  are determined,  and they are shown to consist of a 

unique conjugacy class. It will also be proved that if n ~ 9, then the N-Injectors  

of Alt(n)  are the nilpotent subgroups of maximal order. We will conclude the 

paper  by proving that if G = Air(n),  then conjecture 1 and conjecture 2 of [1] 

hold. To begin, we will review some definitions and notation from [1]. 

DEFtNmOYS ANt) NOTATION. Let 7r be a set of primes and G be a finite group. 

(a) d(2, G )  (d(Tr,2, G))  will denote  the maximum of orders of all nilpotent 

subgroups (nilpotent 7r-subgroups) of G of class at most two. 

(b) M(2, G )  (M(Tr,2, G))  will denote the set of all nilpotent subgroups 

(niipotent 7r-subgroups) of G of class at most two, having order d(2, G )  

2, G)). 
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(c) The N-Injectors (Tr-N-Injectors) of G are maximal nilpotent subgroups 

(maximal nilpotent 7r-subgroups) of G containing an element of sr G)  

(M(7r,2, G)). The set of N-Injectors (Tr-N-Injectors) of G will be denoted by 

N I ( G )  (NI(7r, G)). 
(d) d (:c G)  (d(rr, % G)) will denote the order of nilpotent subgroups (nilpo- 

tent 7r-subgroups) of G of maximal order. 
(e) M(ae, G)  (M(Tr,~,G))  will denote the set of all nilpotent subgroups 

(nilpotent 7r-subgroups) of G of maximal order. 

In [1] these definitions were discussed in detail, and the following two 

conjectures were stated. 

CO~JF.(TrURE t. If G is a finite group and r  set of primes, then NI(Tr, G)  is 

a conjugacy class. 

CONJECTURE 2. If G is a finite group and 7r a set of primes, then M(Tr, ~, G)  

is a conjugacy class. 

In [1] it was proved that if G = Sym(n), then conjecture 1 and conjecture 2 

hold. As mentioned above, in this paper we confirm conjectures 1 and 2 for the 
alternating groups. 

B. Evaluation of d(2, S2(Alt(2n))) 

In this section we will first determine M(2, SffGL(n, 3))) and then 
M (2, S2(Sym(2n))). As a consequence d (2, SdAlt(2n))) will be evaluated. It was 

already proved in [1, sec. B] that S2(Sym(2n)) can be embedded in SdGL(n,  3)) 

and that 
d (2, S2(GL(n, 3))) = d (2, SffSym(2n))) = 2" .~,nj. 

We will use these facts freely in the sequel. 

LEMMA B.1. Let a p-group P act faithfully and irreducibly on a vector space V 

of dimension n over GF(q). Suppose that P is not cyclic, generalized quaternion, 

dihedral or semi-dihedral, then: 

(a) P has a subgroup H of index p such that we can write V as a direct sum 

V = V~ + V2 + ' "  Vp, where each V~ is an H invariant subspace. 

(b) Let K = C ,  (V~); then K ~  1 for 1 < i <= p and i fx  E P \ H ,  then V~x = V, ,  

where the permutation i--~ i' is a p-cycle. 

(c) If  in addition class(P) -< 2, then I K~ [ <= p for 1 <- i <= p. 

PRoov. Parts (a) and (b) are a theorem of Roquet te  [3, 19.2]. We will prove 

part (c). Take x E P \ H and define a mapping: 
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:K,--*I),(Z(P)) by , r  x l  Vy E K , .  

We will show that q0 is a well defined monomorph i sm.  Since P is of class at most 

two qo(y) E P' C Z(P). Since for each i, 1 <- i _-< p, Ki = K~ j for  some 1", 1 ~ j ~ p, 

it follows that CK,(x) acts trivially on V; hence CK,(X)= 1. This implies that: 

[H,K,]C_K, f3P'C_K, f3Z(P)= I and K, C Z ( H ) .  

Clearly, for  each y @K, ,  y* = y l y ,  x] and by induction y "  = y l y ,  x]'. Since 

x p E H and K, C_Z(H), y = y~P = y [ y . x ]  p, and we obtain that [y .x]  p = 1.'l-bus. 

~0(y)E f ~ t ( Z ( P ) ) a n d  r is well defined. Moreover ,  as 

q0(yty2) = [y,y2, x] = [y,, x ]Y:[y2, x] = [y,, x][y2, x] = r 

q~ is a homomorph i sm,  and since ker q~ = CK,(x)= 1, q~ is a monomorph i sm.  

P acts irreducibly on V so by [3, 15.4] Z(P)  is cyclic. There fo re ,  [ [ L ( Z ( P ) )  I = 

p, which implies that  ] r  hence ]K,l<-_p. Now the proof  of (c) is 

complete .  

LEMMA B.2. l f  P is a 2-subgroup of GL(n ,  3) of class at most two and of order 
2 "*i"m, which acts irreducibly, then either (a) or (b) occurs: 

(a) n = 1  and ] P ] = 2 ;  

(b) n = 2, ] P I = 8 and P is one of the following: cyclic, quaternion or dihedral. 

PROOF. We will prove  first that n = 2. If P is none  of the following groups,  

cyclic, general ized,  quatern ion ,  dihedral  or semi-dihedral ,  then apply L e m m a  

B.1. It follows that n = 2t and there  are two subgroups of P, K, and H, such that 

K, C H, ]K, ]_-< 2, I P : H I = 2, H/K, C_ S2(GL(t, 3)) and class(H/K,) -< 2. Conse-  
quently,  JH : K, ]_-< 2 ''1`/21 and hence 

2 s' = I p I - - I p : H I I H : K , I [ K , I = < 2  '*t'm*-', 

yielding t _-< 1 and hence n ~ 2. As class(P)_--- 2, P is not semi-dihedral .  If P is 

general ized qua te rn ion  or dihedral ,  then class(P) _-< 2 implies that I P I = 8, and in 

view of the order  of P it follows that  n --2.  If P is cyclic, then by [1, p. 266] 

IPI ---- 2S[n/2] + 2  and the order  of P implies that n _-< 3. But as S2(GL(3, 3)) does 

not contain a cyclic subgroup of o rde r  16, we obtain in this case n ~ 2 as well. We 

have proved  that in any case n _- 2. As S2(GL(2, 3)) is semi-dihedral  of o rder  16 

and class three,  [2, p. 191] implies the s t ructure  of P in the case n = 2, and 

L e m m a  B.2 is proved.  

LEMMA B.3. If P is a 2-subgroup~of GL(n,3) of class at most two and of order 
2 "~"m, then : 
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(a) P is a direct product of its projections on its irreducible subspaces. 

(b) If n is even, then the dimension of each irreducible subspace is two. 

(c) If n is odd, then the dimension of one irreducible subspace is one, while that 

of the other subspaces is two. 

PROOF. Consider I'I~_1 P~, the direct product of the projections of P on its 

irreducible subspaces V~. It is a subgroup of GL(n, 3) of class at most two, hence 

of order 2~+~nnl at most. But as ]PI = 2~1"~21, it follows that P = I-ILj P, and (a) is 

proved. Let dim(Vi) -- n, ; by Lemma B.2, n~ is either 1 or 2. Now the order  of P 

implies (b) and (c). 

Combining Lemma B.2 and Lemma B.3, the structure of the elements of the 

set M(2, S2(GL(n, 3))) is clear. 

COROLLARY B.4. Let P E ~/(2, SffGL(n, 3))). Then P is the direct product 

P = I1~/=~ D, if n is even and P = Ill"/~ I D, if n is odd, where Do is a group of order 2 

and the D,'s for 1 <= i <= [n/2] are dihedral, quaternion or cyclic of order 8. 

LEMMA B.5. Let P and D~ be as in Corollary B.4 and suppose that P has a 

faithful permutation representation on 1~ of degree 2n. Then the following hold : 

(a) The representation of P is a direct product of the representations of the D, ' s, 

0=< i =<[n/2]. 

(b) For 1 <=i<=[n/2], D, is the dihedral group and it is represented on 4 

symbols. 

(c) Do is represented on 2 symbols. 

PROOF. By induction on n. Clearly the Lemma holds for n = 1 and 2. Assume 

n > 2, and let s ",Ilk be a partition of f l  into transitive orbits of P. 

Consider II~l P~, the direct product of the projections of P on the fL 's, 1 =< i =< k. 

This is a group of class at most 2 and P can be embedded in it. Now the order of 

P implies that P = II~=, P~ and {P,]= 2 ",'t"/~j, where 2n, = I~, l is a power of 2. In 

view of the order of P at most one f~, has cardinality 2, while all the others have 

cardinality divisible by 4. As P~ can be embedded in S2(GL(n~, 3)) and has order  

2 ~,+~"/2~, by Corollary B.4 it has the same form as P and an induction hypothesis 

can be applied if k => 2. Thus the Lemma is proved in the case when P is not 

transitive. If P is transitive, the stabilizer of a point is a subgroup H having the 

property core (H)  = 1. As for 1 =< i =< s, every subgroup of D~ of order  4 contains 

a central involution, the order of the projection of H on each D, is at most 2 and 

hence I HI--< 2 ~"'21. It follows that 2 "+1"/21 = I PI = 2n I HI --< 2n2 t"/21 which con- 

tradicts the assumption n > 2. The proof of Lemma B.5 is complete. 
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COROLLARY B.6. If  PEsg(2 ,S2(Sym(2n)) ) ,  then P is a direct product of 

permutation groups as follows: 

(a) P = 1-I7_-/-; S:(Sym(4)) if n is even. 

(b) P = (III"s I S:(Sym(4))) x Sym(2) if n is odd. 

PROOV. If P E ~ l ( 2 ,  S2(Sym(n))), then P can be embedded  in S2(GL(n,3)) 

and then P E.~r S2(GL(n,3))). Now apply Corollary B.4 and Lemma B.5. 

COROLLARY B.7. d(2, S2(AIt(2n))) = 2 ",j"/-q ' 

PROOF. Clearly d(2, S2(AIt(2)))= 1. So suppose that n > 1. Then 

d(2, S2(Alt(2n))) equals either 2 "+l~ or 2 "~l"m '. If d(2, Sz(Alt(2n)))= 2 "+l"m, 

then ,if(2, S2(Alt(2n ))) _C ,if(2, S2(Sym(2n))). But if P E ar S2(Sym(2n))), then 

it follows by Corollary B.6 that P has odd permutations,  for example a single 

transposition in an arbitrary S2(Sym(4)), a contradiction. 

C. A r i t h m e t i c a l  l e m m a s  

We will introduce some notation. Let m be a positive integer and p a prime. 

Define ~2(1) = q~(1) = 1 and 

"2 

2 3 . 2 ~  --' 

q~2(m) =. pp" '  

I'I 
I 

if m = 2, 

if m = 2 "  a n d a = > 2 ,  

i f m = p % p > 2 a n d a = l ,  

if m = l~I pT', where the p~'s are 
i - I  

distinct primes for 1 _-< i _- s ; 

if m = p " ,  

if m = 1~ P~", where the pl's are 
i - i  

distinct primes for 1 < i ~ ~ ~---So 

Using our  notation it follows that if M is a maximal nilpotent subgroup of 

Sym(n)  corresponding to the partition {n~,.- . ,  nr} of n (see [1,p. 267] and 14, 
1.5]), then by [4, 1.5] IMI = 1-I~, ~0=(n,)and by [1, B.5] d(2, M ) =  1-I~_, ~o2(n,). 

LEMMA C. 1. I f  p is an odd prime and p ~ = XL, 2 ~' is the 2-adic representation 

of p ~, then: 

(a) r ) < ~ 1-II=, q~2(2 ", ) if p ~ ~ {3, 5}, 

(b) q~.(p")<~Ili~,  q~=(2~ ifp"fY_{3,5,9}. 
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PROOF. (a) The  inequality can be easily checked for p~=<27, so assume 

p ~ > 2 7 .  If p " - - -3  (mod4) ,  then 1-I~,r176 and if p ~ - = l  

(mod 4), then 1-1L~ q 9 2 ( 2 " ' )  ,~-3/4 r l~ 23 .2 ' v~  I = ~  , , . ~  So in any case we get in view of 

p ~ > 2 7  and p=>3, 

'fI I3 r  ~, ) => 2 9,4 2-~'2~' '1= 23p-/4-9/4 > 2-'p-/3 > p,O ' = q~2(pO ). 
i -I i~ l  

(b) If p ' ~ 3  is of the form 2 ~ - 1 ,  then by [3, 19.3] a = 1 and the inequali ty 

follows easily. So assume that  p is not of this form and hence s < log2 p ~. Since 

�89 l~ 22~' ' = 122p~ > 19P~176 2~ 
i=1 

it suffices to prove that p~P~ ' )<~2 ~~176176 We will prove the following 

equivalent  inequality: 

(i) 

equali ty (*) holds for  p = 7. 

(ii) If p = 5  and ot > 2 , t h e n  

a 2 
5 ~ - 1 = 5 2 - 1  

yielding (*). 

(iii) If p = 3 and a >-3, then 

a 3 < - -  
3 ~ - 1 = 3 3 - 1  

yielding (*). 

LEMMA C.2. 

> If p = 7 ,  then 1 > (2/(p - 1))log.,p. Since l l (p - 1 ) -  > _ c~/(p ~ - 1), the in- 

and 1 > ( ~ _ 1  1 + ~ _ 1 ) 1 o g 2 5 ,  

and 1>(y~-_1+333-33_--~_1)iog23, 

I f  m is a positive integer, not a power of  a prime, then there is a 

partition {nl," �9 ", n,} of  m into powers of  a f ixed prime which divides m such that: 

< 21-l/=l q~dn,), (a) q~dm) i , 

(b) q~(m)<�89 ~ ( n , ) .  

PROOF. Using induction it is easily seen that it suffices to prove the L e m m a  in 

the case m = paq#, where  p and q are distinct primes and p > q. We will deal 

first with the case m = 6. Considering the part i t ion {4, 2} we obtain q~2(4)q~2(2) = 

r = 8.2 = 16 while ~0d6) = q~(6) = 6, and we are through.  
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Now we can assume that p~ _>- 3 and if p~ :- 3, then q = 2 and/3 -> 2. Consider 

the partition of m into q~ parts, where each part equals p". Parts (a) and (b) will 

be proved separately. 
(a) (i) If m = p~ .2. then p~ > 3  implies that 

r ) = 2p p" ' < ~p2e~ , = ~(~p2(p,, ))2 

and this case is settled. 

(ii) If m = p~ �9 2 t~ where /3 _-> 2, then the desired inequality is equivalent to 

23/4 < (~),/_~,,p,,. , (2~ ' , - i  j /2 t ,  

But as (~)J/" _<- (~)~/20 and 3/4 _-< (20 - 1)/2 ~ the last inequality follows and this case 

is settled too. 
(iii) If m = p~ where q = 3, then the desired inequality is equivalent to 

q Ilq ( (�89 I ' (ql '  I)]q" 

But as (')'/'-<_ (~),/,o ~ <= (q~ _ l)/qO and q TM = 3 '/3 the last inequality follows and 

the proof of (a) is complete. 

(b) The desired inequality is equivalent to 

If p"  = 3, then q = 2 and/3  _--- 2 and the inequality follows from (~)"-< (~),/~,o-,) 

and 2 = q  '/<"-~). If p~ _->5, then the inequality follows as ~==_(�89 ,~ and 

q'/~"-~_<-2. Now the proof of part (b) is complete. 

D. The main theorems 

THEOREM D.1. (a) ~ ( ~ ,  Alt(5)) is the set of 5-Sylow subgroups of Alt(5). 

(b) If n = 3, 6, 9, then ~ (~, Alt(n )) is the set of 3-Sylow subgroups of AIt(n).  

(c) If n ~  3 (rood4) and n ~ 5 , 6 , 9  then ~ ( ~ , A I t ( n ) )  is the set of 2-Sylow 

subgroups of Alt(n).  
(d) If n = 3 (rood 4) and n > 3, then ~ ( ~ , A l t ( n ) )  is the set of all subgroups 

generated by any 3-cycle and a 2-Sylow subgroup of Alt(n - 3) on the remaining 

n - 3 symbols. 

(e) In any case ~ ( ~ , A I t ( n ) )  is a conjugacy class. 

PROOF. In view of the structure of maximal nilpotent subgroups of Sym(n)  

(see [4, 1.5]) a simple checking yields (a) and (b). Let M A C  ~ ( ~ , A l t ( n ) )  where 

n ~  3,5,6,9 and let MAC M, where M is a maximal nilpotent subgroup of 

Sym(n),  corresponding to the partit ion {n~, n2," �9 ", nk} of n. If one of the n~'s is 
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not a power of a prime, then by applying Lemma C.2 (b) to that n~ it follows that 
there is a nilpotent subgroup of Sym(n), M'  (not necessarily maximal) satisfying 
[M'I > 2IM[ ,  contradicting Ma E ~q(~, Alt(n)). Hence each ni is a power of a 

prime. Applying Lemma C. 1 (b), it follows that each ni is either a power of 2 or 

belongs to the set {3,5,9}. A simpIe argument yields: 
(i) If 3 occurs twice in the partition, then n = 6. (Otherwise, the partition is of 

one of the following types: {3, 3 , 9 , . . . } ,  {3, 3 ,5 , . . . } ,  {3, 3,2~, . . .} ,  a_->l, 

{3, 3, 1}, which can be replaced by {8, 4, 2, 1,-. �9 }, {8, 2, 1 , . . .  }, {4, 2, 20, . . .  }, {4, 3}, 

respectively, the latter partitions corresponding to an M'  satisfying [ M ' [ >  

21M[ . )  

(i i) I f  5 (9) belongs to the part i t ion, then again by a suitable replacement 

argument it fol lows that n = 5 (n = 9). 

As (i) and (i i) contradict our assumption n ~ 3, 5, 6, 9, we can deduce that the 

ni's are powers of 2 and possibly one of them is 3. Since M is a maximal ni lpotent 

subgroup of Sym(n),  the n~'s are either the terms in the 2-adic representation of 

n, or 3 occurs and the n~'s are the terms in the 2-adic representation of n - 3 .  

Using the information about 5g(oc, Sym(n)) (see [1]), (c) and (d) follow. Clearly 
3g(% Alt(n)) is a conjugacy class in cases (a), (b) and (c). As Alt(n) is transitive 

on the (~') 3-subsets of {1,2,-- . ,  n}, it follows that d ( ~ , A l t ( n ) )  is a conjugacy 

class in case (d) as well. This completes the proof of (e) and hence of Theorem 

D.1. 

THEOREM D.2. (a) NI(AIt(5)) is the set of 5-Sylow subgroups of Alt(5). 
(b) If  n = 3,6, then NI(Alt(n))  is the set of 3-Sylow subgroups of Alt(n). 
(c) I f  n ~ 3  (rood4) and n ~ 5 , 6 ,  then NI(Alt(n))  is the set of 2-Sylow 

subgroups of Alt(n). 
(d) If  n = 3 (mod 4) and n > 3, then NI(Alt(n))  is the set of all subgroups 

generated by any 3-cycle and a 2-Sylow subgroup of Alt(n - 3) on the remaining 

n - 3 symbols. 
(e) In any case, NI(Alt(n))  is a con]ugacy class. 

PgOOF. Theorem D.1 implies (a) and (b). Let MA E NI(AIt(n))  where 

n ~  3,5,6 and let MA _C M, where M is a maximal nilpotent subgroup of Sym(n) 

corresponding to the partition {n,, n2,-" ", nk} of n. If one of the ni's is not a 

power of a prime, then by applying Lemma C.2(a) to that n~ it follows that there 

is a nilpotent subgroup of Sym(n), M'  (not necessarily maximal) satisfying 

d(2, M')> 2d(2, M)contradict ing Ma ~ NI(Alt(n)).  Hence each n~ is a power 

of a prime. Applying Lemma C.l(a) it follows that each n, is either a power of 2 

or belongs to the set {3,5}. As in Theorem D.1 it follows that: 
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(i) If 3 occurs twice in the part i t ion,  then n = 6, contradict ing our  assumption.  

(ii) If 5 belongs to the part i t ion,  then n = 5, contradict ing our  assumption 

again. 

Now we can deduce  that the n~ 's are powers of 2 and possibly one  of them is 3. 

Since M is a maximal ni lpotent  subgroup of Sym(n) ,  the n~ 's are e i ther  the terms 

in the 2-adic representa t ion  of n or 3 occurs and the n,'s are the terms in the 

2-adic representa t ion  of n - 3 .  Using the informat ion about  NI (Sym(n ) )  (see 

[1]), (c) and (d) follow. The  proof  of (e) is similar to that of T h e o r e m  D.l (e) .  

THEOREM D.3. Let ,r be a set of primes, then: 

(a) NI( , r ,  Al t (n) )  consists of a unique conjugacy class. 

(b) M(, r ,o%Alt(n))  consists o[ a unique conjugacy class. 

PROOF. Parts (a) and (b) will be proved simultaneously.  Assume first that 

2 E ,r. The  following table de termines  the sets N I(Tr, Alt(n))  and M (,r, 0% Alt(n )) 

in the four  possible subcases. We omit  the proofs,  which follow easily f rom 

Theorems  D.1 and D.2 and the s tructure of maximal ni lpotent  subgroups of 

Sym(n) ,  [4, 1.5]. 

Nl(Tr, AIt(n )) ,ff (~r, oo, AIt(n )) 

3E~r 
5 ~ ~r NI(Alt(n)) M(co, AIt(n )) 

3El r  Nl(Alt(n)) if n#5  M(oo, Alt(n)) if n#5  
5 fE rr Syl2(AIt(n)) if n = 5 Syl2(AIt(n)) if n = 5 

3ETr Syl2(Alt(n)) if n#5  Syl2(AIt(n)) if n#5  
5 E 7r Syl~(Alt(n)) if n = 5 Syl,(Alt(n)) if n = 5 

3E~" 
5 ~ rr Syl2(AIt(n )) Syl2(Alt(n )) 

Thus  the table above  implies T h e o r e m  D.3 in the case 2 ~ 7r. Assuming 2 E rr, it 
follows by [1, D.1, D.2] that if 

A @NI(rr, Sym(n))=NI(Tr,  AIt(n)) (A E M(*r, oo, Sym(n)) ,  

then it has the following form: It is the , r -Hal l  subgroup of a maximal  ni lpotent  
subgroup of Sym(n) ,  which corresponds  to a uniquely defined part i t ion 
{m, h i , "  ", n,} of n satisfying the following conditions: 

(a) m < m i n { p  ]p E - r }  or  m = 0 .  
(b) For  each i, 1 <= i <= s, n, = pT, where  p, E ,r not  necessarily distinct and 

a~_->l. 

As Al t (n )  is transitive on the set of all parti t ions of { 1 , 2 , . . . ,  n} of the form 
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{m,n,...,n~} and as Sylp,(Sym(n~)) forms a conjugacy class in Alt(n,), 
NI(~, Alt(n)) (~(Tr,:c, Alt(n))) consists of a unique conjugacy class in Air(n) 
and Theorem D.3 is proved. 
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